

B. Allen¹, WF. Peacock², G. Headden³, N. Winden⁴, RH. Christenson⁵, JL. Guidi⁶, S. Collins⁷, EL. Walters⁸, JL. Januzzi⁹

1. University of Florida College of Medicine, Gainesville, United States of America 2. Baylor College of Medicine, Houston, United States of America 3. Medical University of South Carolina, Emergency Medicine, Charleston, United States of America 4. Beckman Coulter, Brea, United States of America 5. University of Maryland, Pathology, Baltimore, United States of America 6. Brown University, Providence, United States of America 7. Vanderbilt University Medical Center, Radiology, Nashville, United States of America 8. Loma Linda University School of Medicine, Loma Linda, United States of America 9. Massachusetts General Hospital - Harvard Medical School, Emergency Medicine, Boston, United States of America

BACKGROUND

- Diagnosing acute heart failure (HF) in patients with chronic kidney disease (CKD) is challenging due to the impact of CKD on NT-proBNP levels.
- This study evaluates the impact of CKD on NT-proBNP-based HF diagnosis using novel age-stratified cut points and assesses diagnostic performance.

METHODS

PRECISE-HF: Prospectively enrolled emergency department (ED) patients across 17 U.S. sites.

Inclusion	Exclusion
<ul style="list-style-type: none"> Adult patients (over the age of 21 years) Presented with a clinical suspicion of acute HF 	<ul style="list-style-type: none"> Stage 4 or 5 CKD Chronic dialysis Subjects with dyspnea not secondary to HF

NT-proBNP Testing: Access NT-proBNP (Beckman Coulter, Inc., Chaska, U.S.A.).

CKD Focus: Diagnostic performance assessed in patients with eGFR <60 mL/min/1.73m².

Revised Age-stratified Cut Points:

- ≥750 ng/L for <50 years
- ≥1550 ng/L for 50–75 years
- ≥1700 ng/L for >75 years

Analysis Metrics: sensitivity, specificity, AUC, and Cox proportional hazard ratios.

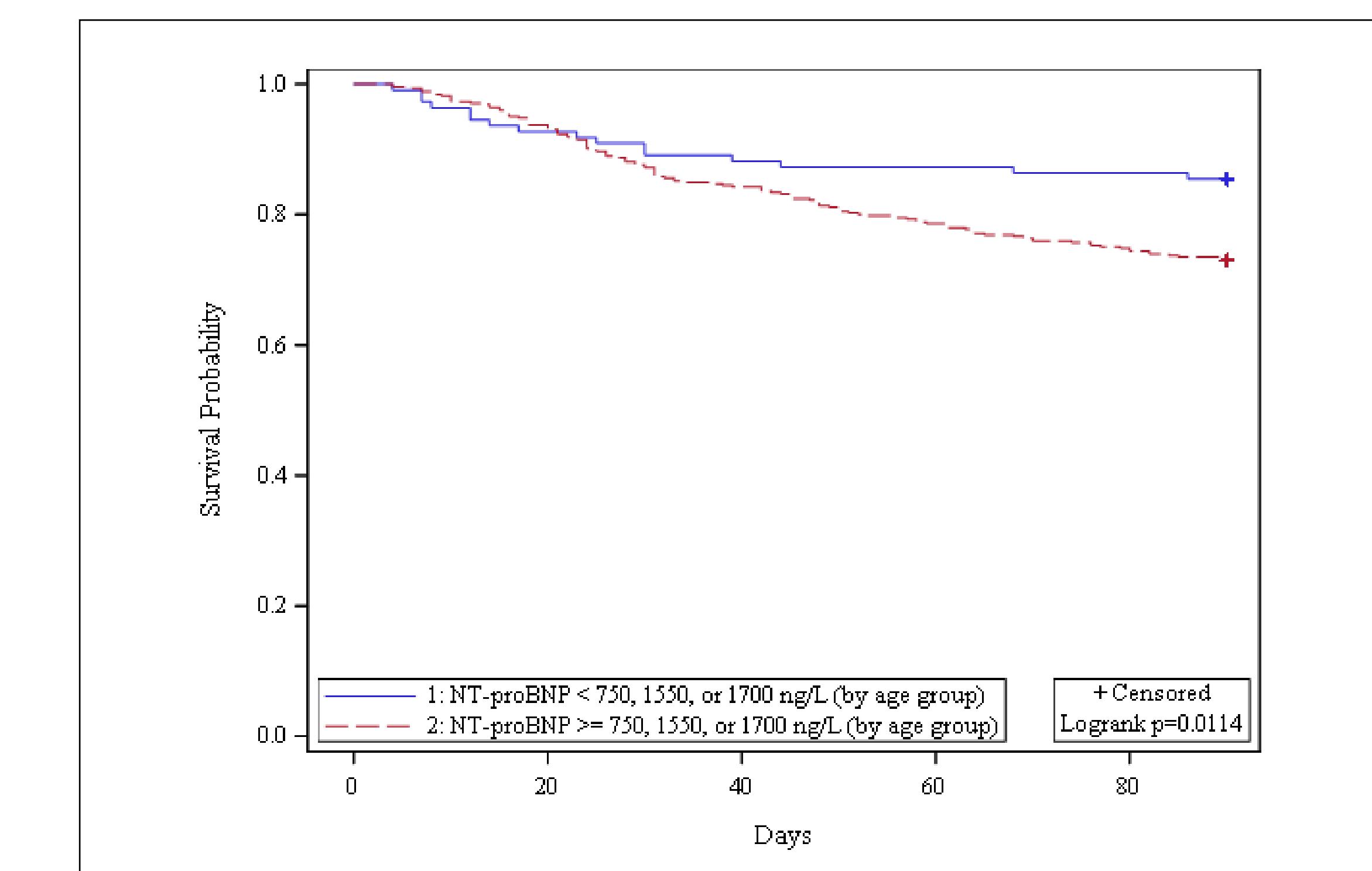

Outcome Assessment: 90-day MACE (major adverse events); defined as death, myocardial infarction, or stroke.

Table 1 Rule-in performance for subjects with CKD applied in age-group cutoffs (eGFR < 60)

Age (yrs)	Cutoff (ng/L)	Sensitivity% (n/N)	95% CI (n/N)	Specificity% (n/N)	95% CI (n/N)	NPV% (n/N)	95% CI % (n/N)	PPV% (n/N)	95% CI % (n/N)	AUC (95% CI)
< 50	750	86.0% (86/100)	77.9- 91.5% (124/160)	77.5% (124/160)	70.4- 83.3% (124/138)	89.9% (124/138)	83.7- 93.9%	70.5% (86/122)	61.9- 77.9%	0.88 (0.84-0.93)
50-75	1550	80.4% (197/245)	75.0- 84.9% (136/176)	77.3% (136/176)	70.5- 82.8% (136/184)	73.9% (136/184)	67.1- 79.7%	83.1% (197/237)	77.8- 87.4%	0.87 (0.84-0.91)
>75	1700	82.3% (163/198)	76.4- 87.0% (99/148)	66.9% (99/148)	59.0- 74.0%	73.9% (99/134)	65.9- 80.6%	76.9% (163/212)	70.8- 82.1%	0.83 (0.79-0.87)
All	-	82.1% (446/543)	78.7- 85.1% (359/484)	74.2% (359/484)	70.1- 77.9%	78.7% (359/456)	74.7- 82.2%	78.1% (446/571)	74.5- 81.3%	0.87 (0.84-0.89)

Figure 1 Patient enrollment was conducted across 17 US sites..

Figure 2 Survival curves of CKD patients over 90 days with the Access NT-proBNP levels below versus above age-stratified cut points.

RESULTS

Study Enrollment: 2,384 patients enrolled with 14.2% CKD.

Using Revised Cut Points:

- Diagnostic specificity** maintained at 74% vs 72% using traditional cut points; **PPV** maintained at 78% vs 68.8% using traditional cut points.
- Overlapping confidence intervals** for diagnostic sensitivity (78.7–85.1%) versus using traditional cut points (sensitivity 81.8–91.1%).
- AUC for HF diagnosis:** 0.88 <50 years, 0.87 for 50–75 years, and 0.83 for >75 years, overall AUC at 0.8767 using traditional cut points.
- Higher MACE mortality** in HF patients with CKD when NTproBNP ≥ respective age stratified cut points (750, 1550, and 1700 ng/L), log rank P value < 0.01.
- Cox proportional hazards model:** CKD patients had 1.539 increased risk of adverse events, P < 0.001.

CONCLUSION

Adjusting NT-proBNP rule-in thresholds for CKD patients preserves diagnostic accuracy and prognostic association. The novel cut points enhance HF diagnosis in renal impairment, supporting more precise clinical decision-making in this high-risk population.